LINEAR EQUATIONS WITH MODULO N

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 17 September 2025.

Reference: A Gentle Introduction to Group Theory, Bana Al Subaiei & Muneerah Al Nuwairan, Section 3.6.

The $\mod n$ relation is an equivalence relation. The set \mathbb{Z}_n is defined as the set of equivalence classes for the integer n:

$$\mathbb{Z}_n = \{ [0]_n, [1]_n, \dots, [n-1]_n \}$$
 (1)

Addition and multiplication can be defined on \mathbb{Z}_n . These create new relations defined as follows.

$$\bigoplus_n : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n \text{ (addition)}$$
 (2)

$$\otimes_n : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$$
 (multiplication) (3)

Addition is defined as

$$[a] \oplus_n [b] = [a+b] \tag{4}$$

where the square brackets indicate equivalence classes.

Multiplication is defined as

$$[a] \otimes_n [b] = [ab] \tag{5}$$

A linear equation with mod n is defined as an equation with one variable, and is written in terms of the equivalence classes:

$$([a] \otimes_n [x]) \oplus_n [b] = [c] \tag{6}$$

where [x] is the class to be determined.

We can write this equation in a simpler form as

$$ax + b \equiv c \mod n \tag{7}$$

where the \equiv sign signifies equality modulo n.

Theorem 1. (Existence of solutions) Let $n \in \mathbb{N}$ and a, b and c be integers. The equation 7 has a solution (possibly more than one) if and only if $\gcd(a, n) \mid (c - b)$.

Another useful theorem is:

Theorem 2. Let $n \in \mathbb{N}$ and a, b and c be integers. If $[x_0]$ is a solution to 7, then the set

$$\left\{ \left[x_0 + \frac{n}{\gcd(a, n)} t \right] : t \in \mathbb{Z} \right\}$$
 (8)

[x]	$12x - 10 \mod 7$
[0]	[-10] = [4]
[1]	[2]
[2]	[14] = [0]
[3]	[26] = [5]
[4]	[38] = [3]
[5]	[50] = [1]
[6]	[62] = [6]

TABLE 1. Solving $12x - 10 = 2 \mod 7$.

contains all possible solutions in \mathbb{Z}_n . All distinct solutions are given by 8 with t restricted to $0 \le t < \gcd(a, n)$.

The proofs are rather long and can be found in Al Subaiei & Al Nuwairan, section 3.6.

The problem with this theorem is that we need to find the solution $[x_0]$ in order to generate the other solutions. For small values of n this can be done by trial and error.

Example 1. Given

$$3x + 3 \equiv 1 \mod 9 \tag{9}$$

We apply theorem 1 with a=3, b=3, c=1 and n=9. By inspection (or using Euclid's algorithm) we see that gcd(3,9)=3, and c-b=-2 since $3 \not / -2$, this equation has no solution.

Example 2. Given

$$12x - 10 \equiv 2 \mod 7 \tag{10}$$

We have a=12, b=-10, c=2 and n=7. Thus gcd(12,7)=1 and c-b=12. Since 1 divides everything, this equation does have solutions. We can find them by trying the integers from 0 up to 6. See Table 1

We see that [x] = [1] provides the only distinct solution. From 8, other solutions are [8], [15] and so on, but these are all equivalent to [1].

Example 3. Given

$$6x + 10 \equiv 20 \mod 3 \tag{11}$$

We have a=6, b=10, c=20 and n=3. Thus gcd(6,3)=3 and c-b=10. Since $3 \not\mid 10$, this has no solutions.

[x]	$[7x \mod 6]$
[0]	[0]
[1]	[7] = [1]
[2]	[14] = [2]
[3]	[21] = [3]
[4]	[28] = [4]
[5]	[35] = [5]

TABLE 2. Solving $7x = 3 \mod 6$.

Example 4. Given

$$7x \equiv 3 \mod 6 \tag{12}$$

we have a=7, b=0, c=3 and n=6. Thus gcd(7,6)=1 so there are solutions. This time, we can just try the integers from 0 to 5 to see if they are solutions. See Table 2.

The only distinct solution is [x] = [3].

Example 5. Given

$$3x + 7 \equiv 1 \mod 15 \tag{13}$$

we have a=3, b=7, c=1 and n=15. Thus $\gcd(3,15)=3$ and $3\mid (1-7)$ so there are solutions. We can find the first solution as follows. Subtract 7 from both sides to get

$$3x \equiv -6 \mod 15 \tag{14}$$

Now -6 = -15 + 9 so [-6] = [9] and we have

$$3x \equiv 9 \mod 15 \tag{15}$$

$$x \equiv 3 \mod 15 \tag{16}$$

Thus [x] = [3] is a solution. Applying 8 we can find other solutions. We have

$$\frac{n}{\gcd(a,n)} = \frac{15}{3} = 5\tag{17}$$

Therefore, we can take $0 \le t < \gcd(a, n)$ or $0 \le t < 3$ to get the other solutions

$$[3+5] = [8] \tag{18}$$

$$[3+10] = [13] \tag{19}$$

We can verify these by checking in 13.

$$[3 \times 8 + 7] = [31] = [15 \times 2 + 1] \equiv [1] \tag{20}$$

$$[13 \times 3 + 7] = [46] = [15 \times 3 + 1] \equiv [1] \tag{21}$$